職稱:副教授
電子郵件:yhhsuiam.ntu.edu.tw
電話:02-33665607
辦公室:應力所305A室
實驗室:應力所102室
實驗室網站:https://sites.google.com/view/ntu-iam-lab102

Image
  • 2010 美國加州大學爾灣分校 醫學工程 博士
  • 2006 美國加州大學爾灣分校 醫學工程 碩士
  • 2002 台灣大學應用力學研究所 碩士
  • 2000 台灣大學機械工程學系 學士
  • 2022/01 ~ Present 國立臺灣大學重點科技研究學院副教授
  • 2022/08 ~ Present 國立臺灣大學生物安全會綜合組組長 
  • 2019/08 ~ Present 國立臺灣大學應用力學所 副教授
  • 2019/08 ~ Present 國立臺灣大學生物安全會 委員
  • 2019/08 ~ 2022/07 國立臺灣大學奈米科技學分學程委員
  • 2013/08 ~ 2019/07 台灣大學應用力學研究所 助理教授
  • 2011/10 ~ 2013/07 美國加州理工學院 博士後研究員
  • 2011/07 ~ 2011/09 美國芝加哥大學 博士後研究員
  • 2010/04 ~ 2011/06 美國加州大學爾灣分校 博士後研究員
  • 應用數學一
  • 工程與人體物理學
  • 細胞微機電及微流體導論
  • 壓電與生物力學微系統

本研究團隊著重跨領域的系統整合的訓練,以系統的角度及產品化為出發點,將基礎力學、生理學、細胞力學、組織工程、生醫微機電製程、生醫微流體,智慧結構及材料,以及量產技術進行整合應用,發展各種微生理系統及器官晶片,包含心臟晶片、血管化腫瘤晶片、微血管晶片、小動脈晶片等可進行藥物篩檢之仿生組織培養系統,並應用這種製程技術研究細胞力學行為。

        本研究團隊亦開發不同新型材料及其應用系統,開發創新之製程技術,將壓電高分子製作成具高度柔性及順應性之穿戴式感測器,結合生理學、生物力學、智慧結構及材料、及系統整合將其應用在肌肉、肌腱、吞嚥、脈壓之穿戴裝置的開發。

  • 微生理系統 & 器官晶片
  • 細胞力學
  • 體外檢測裝置
  • 穿戴式裝置及個人化裝置
  • 壓電系統
  • 榮獲國立臺灣大學104學年度優良教師表揚。
  • 榮獲國立臺灣大學105學年度優良教師表揚。
  • 榮獲國立臺灣大學106學年度優良教師表揚。
  • 榮獲國立臺灣大學107學年度教學傑出教師表揚。
  • 榮獲國立臺灣大學112年十年資深優良教師表揚。
  1. 器官晶片
    • 以小動脈晶片開發動脈疾病模型
    • 具人體管道結構之微組織晶片技術開發
    • 自動化心臟藥物篩檢系統研發
    • 一可進行藥物引起之心臟毒性研究之壓電智慧型系統研發
    • 可自動檢測心肌細胞對藥物反應之壓電換能器的開發
    • 陣列型心臟壓電耦合系統開發
  2. 穿戴裝置 (Wearable Devices)
    • 高順應性壓電穿戴裝置在姿態分析及吞嚥困難監測之應用開發
    • 肌肉感應貼布及吞嚥感應貼布演算法開發及系統整合
    • 肌肉感應貼布及吞嚥感應貼布研發
    • 智慧應變貼布開發

Microphysiological Systems and Lab-on-a-Chip Devices.

  1. S. Shivani, H.J. Wang, Y.T. Chen, C.T. Lin, Y.H. Hsu* (2025) Self-assembled Human Arteriole-on-a-Chip for Arterial Functionality Testing and Disease Modeling. Lab on a Chip.Lab Chip, 2025, 25, 5162. (Lab-on-a-Chip Inside Front Cover) [DOI: 10.1039/d5lc00530b]
  2. Y.H. Hsu*, W.C. Yang, Y.T. Chen, C.Y. Lin, C.F. Yang, W.W. Liu, S. Shivani, P.C. Li (2024, May) Spatially controlled diffusion range of tumor-associated angiogenic factors to develop a tumor model using a microfluidic resistive circuit. Lab on a Chip, 24(10), 2644-2657.(Selected as feature article of the Inside back cover.) [DOI: 10.1039/d3lc00891f]
  3. C.J. Lee, Y.H. Hsu* (2022, Oct). Study on soft hot embossing process for making microstructures in a cyclo-olefin polymeric (COP) film. Journal of Micromechanics and Microengineering, 32, 105008. [DOI: 10.1088/1361-6439/ac8e11]
  4. C.Y. Huang, M.W. Nicholson, J.Y. Wang, C.Y. Ting, M.H. Tsai, Y.C. Cheng, C.L. Liu, D.Z.H. Chan, Y.C. Lee, C.C. Hsu, Y.H. Hsu, C.F. Yang, C.M.C. Chang, S.C. Ruan, P.J. Lin, J.H. Lin, L.L. Chen, M.L. Hsieh, Y.Y. Cheng, W.T. Hsu, Y.L. Lin, C.H. Chen, Y.H. Hsu, Y.T. Wu, T.A. Hacker, J.C. Wu, T.J. Kamp, P.C.H. Hsieh*, (2022, Apr). Population-based high-throughput toxicity screen of human iPSC-derived cardiomyocytes and neurons. Cell Reports, 39, 110643.[DOI: 10.1016/j.celrep.2024.114748]
  5. S. Shivani, Y.H. Hsu*, C.J. Lee, C.S. Cheong, T.T. Chung, A.B. Wang* (2022, Mar). Programmed topographic substrates for studying roughness gradient-dependent cell migration using two-photon polymerization. Frontiers in Cell and Developmental Biology, 10, 825791. [DOI: 10.3389/fcell.2022.825791]
  6. C.J. Lee, Y.H. Hsu* (2021, Dec). A size reduction method for rapid digital PCR using thin flm chip and vacuum pouch microfuidic system. Microfluidics and Nanofluidics, 26:4. [DOI: 10.1007/s10404-021-02507-x]
  7. Y.H. Huang, C.F. Yang, Y.H. Hsu* (2020, Sept) Development of a cardiac-and-piezoelectric hybrid system for application in drug screening. Lab on a Chip, 20(18), 3423-3434.[DOI: 10.1039/d0lc00433b]
  8. C.J. Lee, Y.H. Hsu* (2019, Sep). Vacuum pouch microfluidic system and its application for thin-film micromixers. Lab on a Chip, 19(17), 2834-2843. 

    (Selected as feature article of the Inside back cover.) [DOI: 10.1039/c8lc01286e]

  1. H.H. Wang, T.J. Wu, S.J. Lin, J.T. Gu, C.K. Lee, I.C. Cheng, Y.H. Hsu* (2017, Oct). Dual light-activated microfluidic pumps based on an optopiezoelectric composite. Journal of Micromechanics and Microengineering, 27,125003. [DOI:10.1088/1361-6439/aa91fc]
  2. Y.H. Hsu*, W.W. Liu, T.H. Wu, C. J. Lee, Y.H. Chen, P.C. Li (2019, Jan). Study of Diffusive- and Convective-Transport Mediated Microtumor Growth in a Controlled Microchamber. Biomedical Microdevices, 21(1):7. [DOI: 10.1007/s10544-018-0356-7]
  3. T. Nakano*, Y. Okaie, S. Kobayashi, T. Koujin, C.H. Chan, Y.H. Hsu, T. Obuchi, T. Hara, Y. Hiraoka, T. Haraguchi (2016, Nov). Performance Evaluation of Leader-follower-based Mobile Molecular Communication Networks for Target Detection Applications. IEEE Transactions on Communications, 99, 1-1. [DOI: 10.1109/TCOMM.2016.2628037]
  4. M.L. Moya, Y.H. Hsu, C.C.W. Hughes, S.C. George, A.P. Lee (2013, Sep). In vitro perfused human capillary networks. Tissue Engineering Part C Mathod, 19(9), 730-737. (Co-first author) [DOI: 10.1089/ten.TEC.2012.0430]
  5. Y.H. Hsu, M.L. Moya, C.C.W. Hughes, S.C. George, A.P. Lee (2013, Aug). A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab on a Chip, 13(15), 2990-2998. [DOI: 10.1039/c3lc50424g]
  6. Y.H. Hsu, M.L. Moya, P. Abiri, C.C.W. Hughes, S.C. George, A.P. Lee (2013, Jan). Full range physiological mass transport control in 3D tissue cultures. Lab on a Chip, 13(1), 81-89. [DOI: 10.1039/c2lc40787f]

Wearables

  1. Y.H. Hsu*, Y.L. Lu, T.W. Wang, G.R. Chu, L.Y. Hsu, S.R. Lin, T.Y. Huang, W.T. Tang. (2025, June) An Ultra-Compliant P(VDF-TrFE) Fiber-based Muscle Patch Sensor for a New Wearable Application: Monitoring Muscle Activities and Fatigue through the Peripheral Length of a Muscle’s Physiological Cross-Sectional Area. Sensors and Actuators A. 393, 116823. [DOI: 10.1016/j.sna.2025.116823]
  2. Y.H. Hsu*, Y.X. Wang, C.H. Shih, M.S. Li, S.W. Huang, T.T. Lin, M.Y. Hsiao, T.G. Wang (2025, Feb) A piezoelectric swallow patch sensor and its correlation to the physiological swallowing processes. Smart Mater. Struct.34, 035024. [DOI: 10.1088/1361-665X/adb5e0]
  3. Y.H. Hsu*, P.C. Liu, T.T. Lin, S.W. Huang, Y.C. Lai. (2020, Nov) Development of an Elastic Piezoelectric Yarn for the Application of a Muscle Patch Sensor. ACS Omega2020, 5(45), 29427-29438. [DOI: 10.1021/acsomega.0c03309]
  4. Y.H. Hsu*, C.H. Chan, W.C. Tang (2017, Nov). Alignment of Multiple Electrospun Piezoelectric Fiber Bundles Across Serrated Gaps at an Incline: A Method to Generate Textile Strain Sensors. Scientific Reports, 7,15436.[DOI: 10.1038/s41598-017-15698-7]

Smart systems

  1. Y.H. Hsu, Y.M. Lin, C.K. Lee* (2021, Nov). A two-dimensional piezoelectric traveling wave generator using a multi-integer frequency, two-mode method (MIF-TM). Smart Materials and Structures, 30,125026. [DOI: 10.1088/1361-665X/ac3432]
  2. Y.H. Hsu, Z.X. Lin, C.K. Lee* (2021, Oct). A Gated Two-Frequency Two-Mode Method for Piezoelectric Motorization. ASME Letters in Dynamic Systems and Control4, 041013-1. [DOI: 10.1115/1.4050796]
  3. Y.M. Lin, Y.H. Hsu, W.C. Su, Y.T. Kao, C.K. Lee* (2021, Jul). Development of a two-dimensional piezoelectric traveling-wave generator. Journal of Intelligent Material Systems and Structures, 32(10), ICAST special issue 1071-1088.[DOI: 10.1177/1045389X20943]
  4. C.S. Tsai, R.W. Mao, S.C. Tsai, K. Shahverdi, Y. Zhu, S.K. Lin, Y.H. Hsu, G. Boss, M. Brenner, S. Mahon, G.C. Smaldone (2017, Feb). Faraday Waves-Based Integrated Ultrasonic Micro-Droplet Generator and Applications. Micromachines, 8(2), 56.[DOI: 10.3390/mi8020056]
  5. H.K. Ma, R.H. Chen, N.S. Yu, Y.H. Hsu(2016, Nov). A miniature circular pump with a piezoelectric bimorph and a disposable chamber for biomedical applications. Sensors and Actuators A: Physical, 251: 108-118. [DOI: 10.1016/j.sna.2016.10.010]
  6. H.K. Ma, R.H. Chen, Y.H. Hsu(2015, Oct). Development of a piezoelectric-driven miniature pump for biomedical applications. Sensors and Actuators A: Physical, 234: 23-33. [DOI: 10.1016/j.sna.2015.08.003]

Smart materials

  1. C.H. Tsai, M. Aboy, L. Pelaz, Y.H. Hsu, W.Y. Woon*, P.J. Timans, C.K. Lee* (2022, Dec). Rapid thermal process driven intra-die device variations. Materials Science in Semiconductor Processing, 152, 107052.[DOI: 10.1016/j.mssp.2022.107052]
  2. C.H. Tsai, C.P. Savant, M.J. Asadi, Y.M. Lin, I. Santos, Y.H. Hsu, J. Kowalski, L. Pelaz, W.Y. Woon*, C.K. Lee*, J.C.M. Hwang* (2022, Aug). Efficient and stable activation by microwave annealing of nanosheet silicon doped with phosphorus above its solubility limit. Applied Physics Letters, 121, 052103.[DOI: /10.1063/5.0099083]
  3. C.H. Tsai, Y.H. Hsu, I. Santos, L. Pelaz, J.E. Kowalski, J.W. Liou, W.Y. Woon, C.K. Lee (2021, Jan). Achieving junction stability in heavily doped epitaxial Si:P. Materials Science in Semiconductor Processing, 127, 105672.[DOI: 10.1016/j.mssp.2021.105672]
  4. T.H. Chen, T.Y. Chu, Y.M. Lin, S.J. Lin, J.T. Gu, Y.H. Hsu* (2018, Sep). Light-activated piezoelectric linear motor by using a serial bimorph made of an optopiezoelectric composite. Smart Materials and Structures, 105050.[DOI: 10.1088/1361-665X/aadc35]
  5. W.C. Ko, Y.H. Hsu, S.C. Weng, C.K. Chang, M.T. Lee, W.T. Chuang, H.C. Thong, M. Ali, E.W. Huang (2017, Jun). Using in-situ synchrotron x-ray diffraction to investigate phase transformation and lattice relaxation of a three-way piezo-phototronic soft material. Semiconductor Science and Technology, 32(7), 074005. [DOI: 10.1088/1361-6641/aa6fc5]

Optical systems

  1. C.H. Wang, H. Lee, Y.H. Hsu, S.S. Lee, J.W. Huang, W.J. Wu, C.K. Lee* (2020, Feb) Photonic Doppler velocimetry for high-speed fragment generator measurements. Optics Express, 28(3), 3864-3878.[DOI: 10.1364/OE.377832]



DMC Firewall is a Joomla Security extension!